Information Security ˗ˋˏ ♡ ˎˊ˗

AI/deep learning

[Tensorflow] CUDA, cuDNN 설치(오류 해결)

토오쓰 2020. 10. 20. 00:30

 

"Tensorflow gpu를 사용하면서 필요한 CUDA, cuDNN 설치하기"

 

 

1. pip freeze

아나콘다를 통해 깔려있는 모든 것들 나열

 

 

2. 자신의 환경과 맞는 CUDA, cuDNN 확인하기

www.tensorflow.org/install/source_windows#tested_build_configurations

 

cuDDN: 7

CUDA: 9

3. CUDA 설치

https://developer.nvidia.com/cuda-90-download-archive

 

 

CUDA Toolkit 9.0 Downloads

Select Target Platform Click on the green buttons that describe your target platform. Only supported platforms will be shown. Operating System Architecture Distribution Version Installer Type Do you want to cross-compile? Yes No Select Host Platform Click

developer.nvidia.com

 

 

 

4. CUDA와 호환되는 버전의 cuDNN 설치

ttps://developer.nvidia.com/rdp/cudnn-archive

 

5. cuDNN 파일의 압축풀기, C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 의 폴더로 옮기기

CUDA 버전이 9.0이면 파일의 옮길 경로 = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

압축을 푼 cuDNN 파일을 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 로 옮겨서 bin, include, lib 폴더를 덮어씌우기

해당 파일을 복사하여

 

경로에 붙여넣기

+ 3개의 파일 경로 환경변수 PATH에 추가하기

 

 

참고

https://coding-groot.tistory.com/87

 

error

ImportError: Could not find 'cudart64_90.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Download and install CUDA 9.0 from this URL: https://developer.nvidia.com/cuda-90-download-archive

해결방안

https://developer.nvidia.com/cuda-90-download-archive

 

CUDA Toolkit 9.0 Downloads

Select Target Platform Click on the green buttons that describe your target platform. Only supported platforms will be shown. Operating System Architecture Distribution Version Installer Type Do you want to cross-compile? Yes No Select Host Platform Click

developer.nvidia.com

 

 

tensorflow - keras version 매칭

docs.floydhub.com/guides/environments/

 

List of Available Environments - FloydHub Documentation

edit Environments Below is the list of Deep Learning environments supported by FloydHub. Any of these can be specified in the floyd run command using the --env option. If no --env is provided, it uses the tensorflow-1.9 image by default, which comes with P

docs.floydhub.com